Final Report

FEHMARNBELT FIXED LINK BIRD SERVICES (FEBI)

Bird Investigations in Fehmarnbelt - Baseline

Waterbirds in Fehmarnbelt

E3TR0011 Volume II – Appendix III

Diagnostics of species distribution models

Prepared for: Femern A/S By: DHI / BioConsult SH Consortium in association with University of Copenhagen and BIOLA

Responsible editor:

FEBI consortium / co DHI Agern Allé 5 DK-2970 Hørsholm Denmark

FEBI Project Director: Anders Malmgren Hansen, DHI www.dhigroup.com

Please cite as:

FEBI (2013). Fehmarnbelt Fixed Link EIA.Bird Investigations in Fehmarnbelt – Baseline.Volume II. Waterbirds in Fehmarnbelt.Report No. E3TR0011Appendix III: Diagnostics of species distribution models.

Appendix: 56 pages

(Main Report: ISBN 978-87-92416-51-3)

May 2013

ISBN 978-87-92416-81-0

Maps:

Unless otherwise stated: DDO Orthofoto: DDO®, copyright COWI Geodatastyrelsen (formerly Kort- og Matrikelstyrelsen), Kort10 and 25 Matrikelkort GEUS (De Nationale Geologiske Undersøgelser for Danmark og Grønland) HELCOM (Helsinki Commission – Baltic Marine Environment Protection Commission) Landesamt für Vermessung und Geoinformation Schleswig-Holstein (formerly Landesvermessungsamt Schleswig-Holstein) GeoBasis-DE/LVermGeo SH

© Femern A/S 2013 All rights reserved.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

CONTENTS

 1.1.1 Diagnostics of species distribution models Red-throated Diver/Black-throated Div - Gavia stellata/Gavia arctica 1.1.2 Great Crested Grebe - Podiceps cristatus 	1
 – Gavia stellata/Gavia arctica 1.1.2 Great Crested Grebe – Podiceps cristatus 	er
1.1.2 Great Crested Grebe – Podiceps cristatus	1
	5
1.1.3 Red-necked Grebe – Podiceps grisegena	.11
1.1.4 Common Eider – Somateria mollissima	.15
1.1.5 Long-tailed Duck – Clangula hyemalis	.28
1.1.6 Common Scoter – Melanitta nigra	.35
1.1.7 Common Goldeneye – Bucephala clangula	.42
1.1.8 Red-breasted Merganser – Mergus serrator	.46
1.1.9 Razorbill – Alca torda	.53

List of figures is included as the final pages

Note to the reader:

In this report the time for start of construction is artificially set to 1 October 2014 for the tunnel and 1 January 2015 for the bridge alternative. In the Danish EIA (VVM) and the German EIA (UVS/LBP) absolute year references are not used. Instead the time references are relative to start of construction works. In the VVM the same time reference is used for tunnel and bridge, i.e. year 0 corresponds to 2014/start of tunnel construction; year 1 corresponds to 2015/start of bridge construction etc. In the UVS/LBP individual time references are used for tunnel and bridge, i.e. for tunnel construction year 1 is equivalent to 2014 (construction starts 1 October in year 1) and for bridge construction year 1 is equivalent to 2015 (construction starts 1st January).

1 APPENDIX III

1.1.1 Diagnostics of species distribution models Red-throated Diver/Blackthroated Diver – Gavia stellata/Gavia arctica

Histogram of residuals

Response vs. Fitted Values

Figure 1.1 Diagnostic plots for the positive part of the two-part GAM for the Red-throated Diver/Black-throated Diver in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.2 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Red-throated Diver/Black-throated Diver during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.3 Observed and predicted values of Red-throated Diver/Black-throated Diver densities (ind./km²) for season 1 (A) and season2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

Figure 1.4 Observed and predicted values of Red-throated Diver/Black-throated Diver densities (ind./km²) for season 3 (A) and season 4 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

1.1.2 Great Crested Grebe – Podiceps cristatus

Histogram of residuals

Response vs. Fitted Values

Figure 1.6 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Great Crested Grebe during the winter 2008/2009 in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Histogram of residuals

Response vs. Fitted Values

Figure 1.7 Diagnostic plots for the positive part of the two-part GAM for the Great Crested Grebe in Fehmarnbelt during the winter 2009/2010. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.8 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Great Crested Grebe during the winter 2009/2010 in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.9 Observed and predicted values of Great Crested Grebe densities (ind./km²) for season 1(A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

	Mean	density	Total nu	mbers
Area	Density	SE	Total	SE
Alignment area	0.362	0.137	75	28
SPA Kiel Bight	0.329	0.152	144	67
SPA Baltic Sea east of Wagrien	1.138	0.398	361	127
SPA Hyllekrog-Rødsand	-	-	-	-
Residual area	0.165	0.086	251	130
Total	0.333	0.142	756	324

Table 1.1Variability of Great Crested Grebe density and abundance estimates for the season
indicating the highest numbers (November 2008 – March 2009) according spatial modeling
using ship-based survey data.

1.1.3 Red-necked Grebe – Podiceps grisegena

Histogram of residuals

Response vs. Fitted Values

Figure 1.10 Diagnostic plots for the positive part of the two-part GAM for the Red-necked Grebe in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.11 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Red-necked Grebe during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.12 Observed and predicted values of Red-necked Grebe densities (ind./km²) for season 1 (Nov 2008 – Apr 2009) and season 2 (Aug – Sept 2009) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

- Figure 1.13 Observed and predicted values of Red-necked Grebe densities (ind./km²) for season 3 (Oct 2009 Apr 2010) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.
- Table 1.2Variability of Red-necked Grebe density and abundance estimates for the season indicating
the highest numbers (November 2008 March 2009) according spatial modeling using
ship-based survey data.

	Mean	density	Total nu	umbers
Area	Density	SE	Total	SE
Alignment area	0.173	0.048	36	9
SPA Kiel Bight	0.564	0.111	248	48
SPA Baltic Sea east of Wagrien	0.217	0.062	69	20
SPA Hyllekrog-Rødsand	-	-	-	-
Residual area	0.293	0.066	445	100
Total	0.335	0.074	762	168

1.1.4 Common Eider – Somateria mollissima

Model on aerial surveys

Histogram of residuals

Response vs. Fitted Values

Figure 1.14 Diagnostic plots for the positive part of the two-part GAM for the Common Eider in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.15 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Common Eider during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.16 Diagnostic plots for the positive part of the two-part GAM for the Common Eider in Fehmarnbelt during the summer period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.17 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Common Eider during the summer period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.18 Observed and predicted values of Common Eider densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

Figure 1.19 Observed and predicted values of Common Eider densities (ind./km²) for Season 3 (A) and season 4 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

Figure 1.20 Observed and predicted values of Common Eider densities (ind./km²) for season 5 (A) and the summer season (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

	Mean	density	Total ı	numbers
Area	Density	SE	Total	SE
Alignment area	35.25	6.84	7,395	1,435
SPA Kiel Bight	226.66	37.08	160,262	26,220
SPA Baltic Sea east of Wagrien	48.75	7.95	17,908	2,921
SPA Hyllekrog-Rødsand	12.79	2.59	3,143	637
Residual area	41.32	6.79	146,192	24,016
Total	67.41	11.07	327,505	53,794

Table 1.3Variability of Common Eider density and abundance estimates for the season indicating the
highest numbers (November 2009 – March 2010) according spatial modeling using aerial
survey data.

Model on ship-based surveys

Histogram of residuals

Response vs. Fitted Values

Figure 1.21 Diagnostic plots for the positive part of the two-part GAM for the Common Eider in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.22 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Common Eider during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.23 Observed and predicted values of Common Eider densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colours.

Figure 1.24 Observed and predicted values of Common Eider densities (ind./km²) for season 3 (A) and season 4 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

Figure 1.25 Observed and predicted values of Common Eider densities (ind./km²) for season 5 visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

1.1.5 Long-tailed Duck – Clangula hyemalis

Model on aerial surveys

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

Figure 1.26 Diagnostic plots for the positive part of the two-part GAM for the Long-tailed Duck in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.27 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Long-tailed Duck during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.28 Observed and predicted values of Long-tailed Duck densities (ind./km²) for season1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

30

Model on ship-based surveys

Fitted Values

Figure 1.30 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Long-tailed Duck during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.31 Observed and predicted values of Long-tailed Duck densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

	Mean	density	Total n	umbers
Area	Density	SE	Total	SE
Alignment area	1.31	0.53	277	111
SPA Kiel Bight	18.28	5.05	8,040	2,222
SPA Baltic Sea east of Wagrien	34.42	11.70	10,919	3,711
SPA Hyllekrog-Rødsand	-		-	
Residual area	2.69	1.26	4,108	1,927
Total	10.09	3.44	23,067	7,860

Table 1.4Variability of Long-tailed Duck density and abundance estimates for the season indicating
the highest numbers (November 2009 – March 2010) according spatial modeling using
ship-based survey data.

1.1.6 Common Scoter – Melanitta nigra

Normal Q-Q Plot Resids vs. linear pred. Ċ œ œ Q Sample Quantiles G 0 00 residuals 4 4 N 2 0 0 2 2 2 3 1 2 6 -3 0 3 -2 -1 1 5 1 **Theoretical Quantiles** linear predictor

Model on aerial surveys

Histogram of residuals

Response vs. Fitted Values

Figure 1.32 Diagnostic plots for the positive part of the two-part GAM for the Common Scoter in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.33 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Common Scoter during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.34 Observed and predicted values of Common Scoter densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

Model on ship-based surveys

Resids vs. linear pred.

Figure 1.35 Diagnostic plots for the positive part of the two-part GAM for the Common Scoter in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.36 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Common Scoter during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.37 Observed and predicted values of Common Scoter densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

	Mean	density	Total	numbers
Area	Density	SE	Total	SE
Alignment area	4.85	2.38	1,027	504
SPA Kiel Bight	89.62	30.80	39,420	13,548
SPA Baltic Sea east of Wagrien	65.01	23.03	20,623	7,306
SPA Hyllekrog-Rødsand	-	-	-	-
Residual area	3.94	2.13	6,018	3,248
Total	28.91	10.55	66,061	24,102

Table 1.5Variability of Common Scoter density and abundance estimates for the season indicating
the highest numbers (November 2009 – March 2010) according spatial modeling using
ship-based survey data.

1.1.7 Common Goldeneye – Bucephala clangula

Figure 1.38 Diagnostic plots for the positive part of the two-part GAM for the Common Goldeneye in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.39 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Common Goldeneye during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.40 Observed and predicted values of Common Goldeneye densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

	Mean o	density	Total nu	Imbers
Area	Density	SE	Total	SE
Alignment area	0.51	0.20	107	41
SPA Kiel Bight	1.33	0.46	941	325
SPA Baltic Sea east of Wagrien	0.84	0.31	307	114
SPA Hyllekrog-Rødsand	4.87	1.38	1,196	339
Residual area	0.12	0.06	419	206
Total	0.59	0.20	2,863	984

Table 1.6Variability of Common Goldeneye density and abundance estimates for the season
indicating the highest numbers (November 2009 – March 2010) according spatial modeling
using aerial survey data.

1.1.8 Red-breasted Merganser – Mergus serrator

Model on aerial surveys

Figure 1.41 Diagnostic plots for the positive part of the two-part GAM for the Red-breasted Merganser in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.42 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Red-breasted Merganser during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.43 Observed and predicted values of Red-breasted Merganser densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.

Model on ship-based surveys

Figure 1.44 Diagnostic plots for the positive part of the two-part GAM for the Red-breasted Merganser in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.45 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Red-breasted Merganser during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

	Mean	density	Total n	umbers
Area	Density	SE	Total	SE
Alignment area	1.23	0.48	253	100
SPA Kiel Bight	1.04	0.59	451	255
SPA Baltic Sea east of Wagrien	1.16	0.55	363	173
SPA Hyllekrog-Rødsand	-	-	-	-
Residual area	1.96	1.11	2,971	1,681
Total	1.67	0.93	3,785	2,109

Table 1.7	Variability of Red-breasted Merganser density and abundance estimates for the season
	indicating the highest numbers (November 2009 – March 2010) according spatial modeling
	using ship-based survey data.

1.1.9 Razorbill - Alca torda

Histogram of residuals

Response vs. Fitted Values

Figure 1.47 Diagnostic plots for the positive part of the two-part GAM for the Razorbill in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot.

Figure 1.48 Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two-part GAM model for the Razorbill during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters.

Figure 1.49 Observed and predicted values of Razorbill densities (ind./km²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colours.

	Mean	density	Total nu	mbers
Area	Density	SE	Total	SE
Alignment area	0.09	0.03	19	6
SPA Kiel Bight	0.15	0.06	64	26
SPA Baltic Sea east of Wagrien	0.11	0.06	33	19
SPA Hyllekrog-Rødsand	-	-	-	-
Residual area	0.22	0.09	330	129
Total	0.19	0.08	427	174

Table 1.8	Variability of Razorbill density and abundance estimates for the season indicating the
	highest numbers (November 2009 – March 2010) according spatial modeling using ship-
	based survey data.

Table of figures

Figure 1.2 Spatial correlograms displayin part GAM model for the Red- Fehmarnbelt (A – binomial part	ing the spatial autocorrelation over 10 lags in the residuals for the two- throated Diver/Black-throated Diver during the winter period in the art, B – positive part). The dots indicate the estimated Moran's I value square root of the variance from the estimated Moran's I value. 1 lag eighborhood of 1,500 meters
and the bars show twice the s equals the defined nearest ne	es of Red-throated Diver/Black-throated Diver densities (ind./km ²) for
Figure 1.3 Observed and predicted value season 1 (A) and season2 (B whereas the colour defines th predicted values when larger colours.	e predicted values. There is a good agreement between observed and symbols have "warmer" colours or when smaller symbols have "colder"
Figure 1.4 Observed and predicted value season 3 (A) and season 4 (E whereas the colour defines th predicted values when larger colours.	es of Red-throated Diver/Black-throated Diver densities (ind./km ²) for 3) visualised together, the size of the symbols indicates observed values e predicted values. There is a good agreement between observed and symbols have "warmer" colours or when smaller symbols have "colder"
Figure 1.5 Diagnostic plots for the positiv	ve part of the two-part GAM for the Great Crested Grebe in
Fehmarnbelt during the winte	r 2008/2009. Normality of the residuals is displayed in a Q-Q plot
(upper left) and in a histogram	n (lower left). The spread of the residuals is displayed in the upper right
plot whereas the predicted ag	painst the observed values are plotted in the lower right plot5
Figure 1.6 Spatial correlograms displayin	ng the spatial autocorrelation over 10 lags in the residuals for the two-
part GAM model for the Grea	t Crested Grebe during the winter 2008/2009 in the Fehmarnbelt (A –
binomial part, B – positive part	rt). The dots indicate the estimated Moran's I value and the bars show
twice the square root of the v	ariance from the estimated Moran's I value. 1 lag equals the defined
nearest neighborhood of 1,50	0 meters
Figure 1.7 Diagnostic plots for the positiv	ve part of the two-part GAM for the Great Crested Grebe in
Fehmarnbelt during the winte	r 2009/2010. Normality of the residuals is displayed in a Q-Q plot
(upper left) and in a histogram	n (lower left). The spread of the residuals is displayed in the upper right
plot whereas the predicted ag	painst the observed values are plotted in the lower right plot7
Figure 1.8 Spatial correlograms displayin	ng the spatial autocorrelation over 10 lags in the residuals for the two-
part GAM model for the Grea	t Crested Grebe during the winter 2009/2010 in the Fehmarnbelt (A –
binomial part, B – positive part	rt). The dots indicate the estimated Moran's I value and the bars show
twice the square root of the van	ariance from the estimated Moran's I value. 1 lag equals the defined
nearest neighborhood of 1,50	10 meters
Figure 1.9 Observed and predicted value	es of Great Crested Grebe densities (ind./km ²) for season 1(A) and
season 2 (B) visualised toget	her, the size of the symbols indicates observed values whereas the
colour defines the predicted v	ralues. There is a good agreement between observed and predicted
values when larger symbols h	have "warmer" colours or when smaller symbols have "colder" colours9

Figure 1.10	Diagnostic plots for the positive part of the two-part GAM for the Red-necked Grebe in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.11	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Red-necked Grebe during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.12	Observed and predicted values of Red-necked Grebe densities (ind./km ²) for season 1 (Nov 2008 – Apr 2009) and season 2 (Aug – Sept 2009) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.13	Observed and predicted values of Red-necked Grebe densities (ind./km ²) for season 3 (Oct 2009 – Apr 2010) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.14	Diagnostic plots for the positive part of the two-part GAM for the Common Eider in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.15	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Common Eider during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.16	Diagnostic plots for the positive part of the two-part GAM for the Common Eider in Fehmarnbelt during the summer period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.17	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Common Eider during the summer period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.18	Observed and predicted values of Common Eider densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours

Figure 1.19	Observed and predicted values of Common Eider densities (ind./km ²) for Season 3 (A) and season 4 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.20	Observed and predicted values of Common Eider densities (ind./km ²) for season 5 (A) and the summer season (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.
Figure 1.21	Diagnostic plots for the positive part of the two-part GAM for the Common Eider in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot23
Figure 1.22	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Common Eider during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.23	Observed and predicted values of Common Eider densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.24	Observed and predicted values of Common Eider densities (ind./km ²) for season 3 (A) and season 4 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.25	Observed and predicted values of Common Eider densities (ind./km ²) for season 5 visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.26	Diagnostic plots for the positive part of the two-part GAM for the Long-tailed Duck in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.27	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Long-tailed Duck during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.28	Observed and predicted values of Long-tailed Duck densities (ind./km ²) for season1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours

Figure 1.29	Diagnostic plots for the positive part of the two-part GAM for the Long-tailed Duck in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.30	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Long-tailed Duck during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.31	Observed and predicted values of Long-tailed Duck densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.32	Diagnostic plots for the positive part of the two-part GAM for the Common Scoter in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.33	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Common Scoter during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.34	Observed and predicted values of Common Scoter densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.35	Diagnostic plots for the positive part of the two-part GAM for the Common Scoter in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.36	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Common Scoter during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.37	Observed and predicted values of Common Scoter densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours
Figure 1.38	Diagnostic plots for the positive part of the two-part GAM for the Common Goldeneye in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the

predicted against the observed values are plotted in the lower right plot......42

Figure 1.39	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Common Goldeneye during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.40	Observed and predicted values of Common Goldeneye densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.
Figure 1.41	Diagnostic plots for the positive part of the two-part GAM for the Red-breasted Merganser in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.42	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Red-breasted Merganser during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.43	Observed and predicted values of Red-breasted Merganser densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.
Figure 1.44	Diagnostic plots for the positive part of the two-part GAM for the Red-breasted Merganser in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot
Figure 1.45	Spatial correlograms displaying the spatial autocorrelation over 10 lags in the residuals for the two- part GAM model for the Red-breasted Merganser during the winter period in the Fehmarnbelt (A – binomial part, B – positive part). The dots indicate the estimated Moran's I value and the bars show twice the square root of the variance from the estimated Moran's I value. 1 lag equals the defined nearest neighborhood of 1,500 meters
Figure 1.46	Observed and predicted values of Red-breasted Merganser densities (ind./km ²) for season 1 (A) and season 2 (B) visualised together, the size of the symbols indicates observed values whereas the colour defines the predicted values. There is a good agreement between observed and predicted values when larger symbols have "warmer" colours or when smaller symbols have "colder" colours.
Figure 1.47	Diagnostic plots for the positive part of the two-part GAM for the Razorbill in Fehmarnbelt during the winter period. Normality of the residuals is displayed in a Q-Q plot (upper left) and in a histogram (lower left). The spread of the residuals is displayed in the upper right plot whereas the predicted against the observed values are plotted in the lower right plot